Double branched covers of knotoids
نویسندگان
چکیده
By using double branched covers, we prove that there is a 1-1 correspondence between the set of knotoids in 2-sphere, up to orientation reversion and rotation, knots with strong inversion, conjugacy. This allows us study through tools invariants coming from knot theory. In particular, concepts geometrisation generalise knotoids, allowing characterise invertibility other properties hyperbolic case. Moreover, our construction are able detect both trivial knotoid 2-sphere planar knotoid.
منابع مشابه
On the Heegaard Floer Homology of Branched Double-covers
Let L ⊂ S be a link. We study the Heegaard Floer homology of the branched double-cover Σ(L) of S, branched along L. When L is an alternating link, ĤF of its branched double-cover has a particularly simple form, determined entirely by the determinant of the link. For the general case, we derive a spectral sequence whose E term is a suitable variant of Khovanov’s homology for the link L, convergi...
متن کاملOn Knot Floer Homology in Double Branched Covers
Let L be a link in A×I where A is an annulus. We consider A×I to be embedded in R2×R respecting the obvious fibration and embedding A into a round annulus in R2. We always project L into R2 (or A) along the R-fibration. The complement of L in A × I is thereby identified with the complement of B∪L in S3 where B an unknot as depicted below, called the axis of L. We assume throughout that L inters...
متن کاملConstructing Simplicial Branched Covers
Izmestiev and Joswig described how to obtain a simplicial covering space (the partial unfolding) of a given simplicial complex, thus obtaining a simplicial branched cover [Adv. Geom. 3(2):191-255, 2003]. We present a large class of branched covers which can be constructed via the partial unfolding. In particular, for d ≤ 4 every closed oriented PL d-manifold is the partial unfolding of some pol...
متن کاملFinite Type Invariants of Cyclic Branched Covers
Given a knot in an integer homology sphere, one can construct a family of closed 3-manifolds (parametrized by the positive integers), namely the cyclic branched coverings of the knot. In this paper we give a formula for the the Casson-Walker invariants of these 3-manifolds in terms of residues of a rational function (which measures the 2-loop part of the Kontsevich integral of a knot) and the s...
متن کاملOn the nonexistence of certain branched covers
Starting with the classical result of Alexander [1], asserting that every closed, orientable PL–manifold of dimension n admits a branched cover onto the n–dimensional sphere S , a series of authors such as Berstein and Edmonds [3], Edmonds [11], Hilden [15], Hirsch [16], Iori and Piergallini [18], Montesinos [19] and Piergallini [20] have proved the existence of branched covers satisfying certa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2022
ISSN: ['1019-8385', '1944-9992']
DOI: https://doi.org/10.4310/cag.2022.v30.n5.a3